Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
JCI Insight ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652535

RESUMO

BACKGROUNDPersistent cough and dyspnea are prominent features of post-acute sequelae of SARS-CoV-2 (also termed 'Long COVID'); however, physiologic measures and clinical features associated with these pulmonary symptoms remain poorly defined. Using longitudinal pulmonary function testing (PFTs) and CT imaging, this study aimed to identify the characteristics and determinants of pulmonary Long COVID.METHODSThis single-center retrospective study included 1,097 patients with clinically defined Long COVID characterized by persistent pulmonary symptoms (dyspnea, cough, and chest discomfort) lasting for ≥1 month after resolution of primary COVID infection.RESULTSAfter exclusion, a total of 929 patients with post-COVID pulmonary symptoms and PFTs were stratified diffusion impairment and restriction as measured by percent predicted diffusion capacity for carbon monoxide (DLCO) and total lung capacity (TLC). Dyspnea was the predominant symptom in the cohort (78%) and had similar prevalence regardless of degree of diffusion impairment or restriction. Longitudinal evaluation revealed diffusion impairment (DLCO ≤80%) and pulmonary restriction (TLC ≤80%) in 51% of the cohort overall (n=479). In multivariable logistic regression analysis (adjusted odds ratio; aOR, 95% confidence interval [CI]), invasive mechanical ventilation during primary infection conferred the greatest increased odds of developing pulmonary Long COVID with diffusion impairment and restriction (aOR=10.9 [4.09-28.6]). Finally, a sub-analysis of CT imaging identified radiographic evidence of fibrosis in this patient population.CONCLUSIONSLongitudinal PFT measurements in patients with prolonged pulmonary symptoms after SARS-CoV-2 infection revealed persistent diffusion impaired restriction as a key feature of pulmonary Long COVID. These results emphasize the importance of incorporating PFTs into routine clinical practice for evaluation of patients with prolonged pulmonary symptoms after resolution of SARS-CoV-2. Subsequent clinical trials should leverage combined symptomatic and quantitative PFT measurements for more targeted enrollment of pulmonary Long COVID patients.FUNDINGThis work was supported by the National Institute of Allergy and Infectious Diseases (AI156898, K08AI129705), the National Heart, Lung, and Blood Institute (HL153113, OTA21-015E, HL149944), and the COVID-19 Urgent Research Response Fund established by the Hugh Kaul Precision Medicine Network at the University of Alabama at Birmingham.

2.
medRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405753

RESUMO

RATIONALE: Persistent cough and dyspnea are prominent features of post-acute sequelae of SARS-CoV-2 (termed 'Long COVID'); however, physiologic measures and clinical features associated with these pulmonary symptoms remain poorly defined. OBJECTIVES: Using longitudinal pulmonary function testing (PFTs) and CT imaging, this study aimed to identify the characteristics and determinants of pulmonary Long COVID. METHODS: The University of Alabama at Birmingham Pulmonary Long COVID cohort was utilized to characterize lung defects in patients with persistent pulmonary symptoms after resolution primary COVID infection. Longitudinal PFTs including total lung capacity (TLC) and diffusion limitation of carbon monoxide (DLCO) were used to evaluate restriction and diffusion impairment over time in this cohort. Analysis of chest CT imaging was used to phenotype the pulmonary Long COVID pathology. Risk factors linked to development of pulmonary Long COVID were estimated using univariate and multivariate logistic regression models. MEASUREMENTS AND MAIN RESULTS: Longitudinal evaluation 929 patients with post-COVID pulmonary symptoms revealed diffusion impairment (DLCO ≤80%) and restriction (TLC ≤80%) in 51% of the cohort (n=479). In multivariable logistic regression analysis (adjusted odds ratio; aOR, 95% confidence interval [CI]), invasive mechanical ventilation during primary infection conferred the greatest increased odds of developing pulmonary Long COVID with diffusion impaired restriction (aOR=10.9 [4.09-28.6]). Finally, a sub-analysis of CT imaging identified evidence of fibrosis in this population. CONCLUSIONS: Persistent diffusion impaired restriction was identified as a key feature of pulmonary Long COVID. Subsequent clinical trials should leverage combined symptomatic and quantitative PFT measurements for more targeted enrollment of pulmonary Long COVID patients.

3.
Clin Genet ; 104(4): 434-442, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37340305

RESUMO

As the uptake of population screening expands, assessment of medical and psychosocial outcomes is needed. Through the Alabama Genomic Health Initiative (AGHI), a state-funded genomic research program, individuals received screening for pathogenic or likely pathogenic variants in 59 actionable genes via genotyping. Of the 3874 eligible participants that received screening results, 858 (22%) responded to an outcomes survey. The most commonly reported motivation for seeking testing through AGHI was contribution to genetic research (64%). Participants with positive results reported a higher median number of planned actions (median = 5) due to AGHI results as compared to negative results (median = 3). Interviews were conducted with survey participants with positive screening results. As determined by certified genetic counselors, 50% of interviewees took appropriate medical action based on their result. There were no negative or harmful actions taken. These findings indicate population genomic screening of an unselected adult population is feasible, is not harmful, and may have positive outcomes on participants now and in the future; however, further research is needed in order to assess clinical utility.


Assuntos
Genômica , Metagenômica , Adulto , Humanos , Testes Genéticos
4.
Kidney360 ; 4(4): e544-e554, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36951457

RESUMO

This year marks the 63rd anniversary of the International Society of Nephrology, which signaled nephrology's emergence as a modern medical discipline. In this article, we briefly trace the course of nephrology's history to show a clear arc in its evolution-of increasing resolution in nephrological data-an arc that is converging with computational capabilities to enable precision nephrology. In general, precision medicine refers to tailoring treatment to the individual characteristics of patients. For an operational definition, this tailoring takes the form of an optimization, in which treatments are selected to maximize a patient's expected health with respect to all available data. Because modern health data are large and high resolution, this optimization process requires computational intervention, and it must be tuned to the contours of specific medical disciplines. An advantage of this operational definition for precision medicine is that it allows us to better understand what precision medicine means in the context of a specific medical discipline. The goal of this article was to demonstrate how to instantiate this definition of precision medicine for the field of nephrology. Correspondingly, the goal of precision nephrology was to answer two related questions: ( 1 ) How do we optimize kidney health with respect to all available data? and ( 2 ) How do we optimize general health with respect to kidney data?


Assuntos
Medicina Geral , Nefrologia , Humanos , Rim , Medicina de Precisão , Cuidados Paliativos
5.
Blood Adv ; 7(15): 4200-4214, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36920790

RESUMO

Several independent lines of evidence suggest that megakaryocytes are dysfunctional in severe COVID-19. Herein, we characterized peripheral circulating megakaryocytes in a large cohort of inpatients with COVID-19 and correlated the subpopulation frequencies with clinical outcomes. Using peripheral blood, we show that megakaryocytes are increased in the systemic circulation in COVID-19, and we identify and validate S100A8/A9 as a defining marker of megakaryocyte dysfunction. We further reveal a subpopulation of S100A8/A9+ megakaryocytes that contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein and RNA. Using flow cytometry of peripheral blood and in vitro studies on SARS-CoV-2-infected primary human megakaryocytes, we demonstrate that megakaryocytes can transfer viral antigens to emerging platelets. Mechanistically, we show that SARS-CoV-2-containing megakaryocytes are nuclear factor κB (NF-κB)-activated, via p65 and p52; express the NF-κB-mediated cytokines interleukin-6 (IL-6) and IL-1ß; and display high surface expression of Toll-like receptor 2 (TLR2) and TLR4, canonical drivers of NF-κB. In a cohort of 218 inpatients with COVID-19, we correlate frequencies of megakaryocyte subpopulations with clinical outcomes and show that SARS-CoV-2-containing megakaryocytes are a strong risk factor for mortality and multiorgan injury, including respiratory failure, mechanical ventilation, acute kidney injury, thrombotic events, and intensive care unit admission. Furthermore, we show that SARS-CoV-2+ megakaryocytes are present in lung and brain autopsy tissues from deceased donors who had COVID-19. To our knowledge, this study offers the first evidence implicating SARS-CoV-2+ peripheral megakaryocytes in severe disease and suggests that circulating megakaryocytes warrant investigation in inflammatory disorders beyond COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Megacariócitos/metabolismo , NF-kappa B/metabolismo , Pulmão/metabolismo
6.
Front Cell Dev Biol ; 11: 1039182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875753

RESUMO

NGLY1 deficiency is an ultra-rare, autosomal recessive genetic disease caused by mutations in the NGLY1 gene encoding N-glycanase one that removes N-linked glycan. Patients with pathogenic mutations in NGLY1 have complex clinical symptoms including global developmental delay, motor disorder and liver dysfunction. To better understand the disease pathogenesis and the neurological symptoms of the NGLY1 deficiency we generated and characterized midbrain organoids using patient-derived iPSCs from two patients with distinct disease-causing mutations-one homozygous for p. Q208X, the other compound heterozygous for p. L318P and p. R390P and CRISPR generated NGLY1 knockout iPSCs. We demonstrate that NGLY1 deficient midbrain organoids show altered neuronal development compared to one wild type (WT) organoid. Both neuronal (TUJ1) and astrocytic glial fibrillary acid protein markers were reduced in NGLY1 patient-derived midbrain organoids along with neurotransmitter GABA. Interestingly, staining for dopaminergic neuronal marker, tyrosine hydroxylase, revealed a significant reduction in patient iPSC derived organoids. These results provide a relevant NGLY1 disease model to investigate disease mechanisms and evaluate therapeutics for treatments of NGLY1 deficiency.

7.
Crit Care ; 27(1): 34, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691080

RESUMO

BACKGROUND: Recent single-center reports have suggested that community-acquired bacteremic co-infection in the context of Coronavirus disease 2019 (COVID-19) may be an important driver of mortality; however, these reports have not been validated with a multicenter, demographically diverse, cohort study with data spanning the pandemic. METHODS: In this multicenter, retrospective cohort study, inpatient encounters were assessed for COVID-19 with community-acquired bacteremic co-infection using 48-h post-admission blood cultures and grouped by: (1) confirmed co-infection [recovery of bacterial pathogen], (2) suspected co-infection [negative culture with ≥ 2 antimicrobials administered], and (3) no evidence of co-infection [no culture]. The primary outcomes were in-hospital mortality, ICU admission, and mechanical ventilation. COVID-19 bacterial co-infection risk factors and impact on primary outcomes were determined using multivariate logistic regressions and expressed as adjusted odds ratios with 95% confidence intervals (Cohort, OR 95% CI, Wald test p value). RESULTS: The studied cohorts included 13,781 COVID-19 inpatient encounters from 2020 to 2022 in the University of Alabama at Birmingham (UAB, n = 4075) and Ochsner Louisiana State University Health-Shreveport (OLHS, n = 9706) cohorts with confirmed (2.5%), suspected (46%), or no community-acquired bacterial co-infection (51.5%) and a comparison cohort consisting of 99,170 inpatient encounters from 2010 to 2019 (UAB pre-COVID-19 pandemic cohort). Significantly increased likelihood of COVID-19 bacterial co-infection was observed in patients with elevated ≥ 15 neutrophil-to-lymphocyte ratio (UAB: 1.95 [1.21-3.07]; OLHS: 3.65 [2.66-5.05], p < 0.001 for both) within 48-h of hospital admission. Bacterial co-infection was found to confer the greatest increased risk for in-hospital mortality (UAB: 3.07 [2.42-5.46]; OLHS: 4.05 [2.29-6.97], p < 0.001 for both), ICU admission (UAB: 4.47 [2.87-7.09], OLHS: 2.65 [2.00-3.48], p < 0.001 for both), and mechanical ventilation (UAB: 3.84 [2.21-6.12]; OLHS: 2.75 [1.87-3.92], p < 0.001 for both) across both cohorts, as compared to other risk factors for severe disease. Observed mortality in COVID-19 bacterial co-infection (24%) dramatically exceeds the mortality rate associated with community-acquired bacteremia in pre-COVID-19 pandemic inpatients (5.9%) and was consistent across alpha, delta, and omicron SARS-CoV-2 variants. CONCLUSIONS: Elevated neutrophil-to-lymphocyte ratio is a prognostic indicator of COVID-19 bacterial co-infection within 48-h of admission. Community-acquired bacterial co-infection, as defined by blood culture-positive results, confers greater increased risk of in-hospital mortality, ICU admission, and mechanical ventilation than previously described risk factors (advanced age, select comorbidities, male sex) for COVID-19 mortality, and is independent of SARS-CoV-2 variant.


Assuntos
Bacteriemia , COVID-19 , Coinfecção , Infecções Comunitárias Adquiridas , Humanos , Masculino , SARS-CoV-2 , Estudos de Coortes , Estudos Retrospectivos , Respiração Artificial , Pandemias , Mortalidade Hospitalar , Bactérias , Fatores de Risco , Unidades de Terapia Intensiva
8.
Am J Med Genet C Semin Med Genet ; 193(1): 7-12, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36691939

RESUMO

The cost and time needed to conduct whole-genome sequencing (WGS) have decreased significantly in the last 20 years. At the same time, the number of conditions with a known molecular basis has steadily increased, as has the number of investigational new drug applications for novel gene-based therapeutics. The prospect of precision gene-targeted therapy for all seems in reach… or is it? Here we consider practical and strategic considerations that need to be addressed to establish a foundation for the early, effective, and equitable delivery of these treatments.


Assuntos
Terapia Genética , Doenças Raras , Humanos , Doenças Raras/genética , Doenças Raras/terapia
9.
Front Artif Intell ; 5: 910216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248623

RESUMO

There are over 6,000 different rare diseases estimated to impact 300 million people worldwide. As genetic testing becomes more common practice in the clinical setting, the number of rare disease diagnoses will continue to increase, resulting in the need for novel treatment options. Identifying treatments for these disorders is challenging due to a limited understanding of disease mechanisms, small cohort sizes, interindividual symptom variability, and little commercial incentive to develop new treatments. A promising avenue for treatment is drug repurposing, where FDA-approved drugs are repositioned as novel treatments. However, linking disease mechanisms to drug action can be extraordinarily difficult and requires a depth of knowledge across multiple fields, which is complicated by the rapid pace of biomedical knowledge discovery. To address these challenges, The Hugh Kaul Precision Medicine Institute developed an artificial intelligence tool, mediKanren, that leverages the mechanistic insight of genetic disorders to identify therapeutic options. Using knowledge graphs, mediKanren enables an efficient way to link all relevant literature and databases. This tool has allowed for a scalable process that has been used to help over 500 rare disease families. Here, we provide a description of our process, the advantages of mediKanren, and its impact on rare disease patients.

10.
HGG Adv ; 3(4): 100138, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36119806

RESUMO

Activity-dependent neuroprotective protein (ADNP) syndrome is a rare genetic condition associated with intellectual disability and autism spectrum disorder. Preclinical evidence suggests that low-dose ketamine may induce expression of ADNP and that neuroprotective effects of ketamine may be mediated by ADNP. The goal of the proposed research was to evaluate the safety, tolerability, and behavioral outcomes of low-dose ketamine in children with ADNP syndrome. We also sought to explore the feasibility of using electrophysiological markers of auditory steady-state response and computerized eye tracking to assess biomarker sensitivity to treatment. This study utilized a single-dose (0.5 mg/kg), open-label design, with ketamine infused intravenously over 40 min. Ten children with ADNP syndrome ages 6 to 12 years were enrolled. Ketamine was generally well tolerated, and there were no serious adverse events. The most common adverse events were elation/silliness (50%), fatigue (40%), and increased aggression (40%). Using parent-report instruments to assess treatment effects, ketamine was associated with nominally significant improvement in a wide array of domains, including social behavior, attention deficit and hyperactivity, restricted and repetitive behaviors, and sensory sensitivities, a week after administration. Results derived from clinician-rated assessments aligned with findings from the parent reports. Overall, nominal improvement was evident based on the Clinical Global Impressions - Improvement scale, in addition to clinician-based scales reflecting key domains of social communication, attention deficit and hyperactivity, restricted and repetitive behaviors, speech, thinking, and learning, activities of daily living, and sensory sensitivities. Results also highlight the potential utility of electrophysiological measurement of auditory steady-state response and eye-tracking to index change with ketamine treatment. Findings are intended to be hypothesis generating and provide preliminary support for the safety and efficacy of ketamine in ADNP syndrome in addition to identifying useful endpoints for a ketamine clinical development program. However, results must be interpreted with caution given limitations of this study, most importantly the small sample size and absence of a placebo-control group.

11.
Cell Rep Med ; 3(2): 100530, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35243424

RESUMO

With one in ten suffering from one of 10,000 rare diseases, precision medicine opens a path toward identifying therapies for rare patients. Conversely, it is rare patients-through their collective experience and the knowledge captured in their genetics-who open the path toward identifying therapies for common patients.


Assuntos
Medicina de Precisão , Doenças Raras , Humanos , Conhecimento , Doenças Raras/diagnóstico
12.
Sci Adv ; 8(3): eabl5613, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044823

RESUMO

De novo truncations in Interferon Regulatory Factor 2 Binding Protein Like (IRF2BPL) lead to severe childhood-onset neurodegenerative disorders. To determine how loss of IRF2BPL causes neural dysfunction, we examined its function in Drosophila and zebrafish. Overexpression of either IRF2BPL or Pits, the Drosophila ortholog, represses Wnt transcription in flies. In contrast, neuronal depletion of Pits leads to increased wingless (wg) levels in the brain and is associated with axonal loss, whereas inhibition of Wg signaling is neuroprotective. Moreover, increased neuronal expression of wg in flies is sufficient to cause age-dependent axonal loss, similar to reduction of Pits. Loss of irf2bpl in zebrafish also causes neurological defects with an associated increase in wnt1 transcription and downstream signaling. WNT1 is also increased in patient-derived astrocytes, and pharmacological inhibition of Wnt suppresses the neurological phenotypes. Last, IRF2BPL and the Wnt antagonist, CKIα, physically and genetically interact, showing that IRF2BPL and CkIα antagonize Wnt transcription and signaling.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Transporte/metabolismo , Criança , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Fator Regulador 2 de Interferon/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Via de Sinalização Wnt , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
13.
Adv Ther (Weinh) ; 5(11)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36589922

RESUMO

There are many neurological rare diseases where animal models have proven inadequate or do not currently exist. NGLY1 Deficiency, a congenital disorder of deglycosylation, is a rare disease that predominantly affects motor control, especially control of neuromuscular action. In this study, NGLY1-deficient, patient-derived induced pluripotent stem cells (iPSCs) were differentiated into motoneurons (MNs) to identify disease phenotypes analogous to clinical disease pathology with significant deficits apparent in the NGLY1-deficient lines compared to the control. A neuromuscular junction (NMJ) model was developed using patient and wild type (WT) MNs to study functional differences between healthy and diseased NMJs. Reduced axon length, increased and shortened axon branches, MN action potential (AP) bursting and decreased AP firing rate and amplitude were observed in the NGLY1-deficient MNs in monoculture. When transitioned to the NMJ-coculture system, deficits in NMJ number, stability, failure rate, and synchronicity with indirect skeletal muscle (SkM) stimulation were observed. This project establishes a phenotypic NGLY1 model for investigation of possible therapeutics and investigations into mechanistic deficits in the system.

14.
Am J Med Genet B Neuropsychiatr Genet ; 189(1-2): 37-47, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34889524

RESUMO

Variants within the Neurotrophic Tyrosine Kinase Receptor Type 2 (NTRK2) gene have been discovered to play a role in developmental and epileptic encephalopathies, a group of debilitating conditions for which little is known about cause or treatment. Here, we determine the functional consequences of two variants: p.Tyr434Cys (Y434C) (located in the transmembrane domain) and p.Thr720Ile (T720I) (located in the catalytic domain). Wild-type and variant cDNAs were constructed and transfected into HEK293 cells. In cell culture, variant Y434C exhibited ligand-independent activation of tropomyosin-related kinase B (TRKB) signaling with an associated abnormal response to brain-derived neurotrophic factor (BDNF) stimulation and increased levels of phosphorylated extracellular signal-regulated kinase (ERK) and ETS like-1 protein (ELK1) activity. Expression of variant T720I resulted in decreased TRKB signaling with reduced mTor activity as determined by decreased levels of phosphorylated S6. With the deleterious mechanisms characterized, we utilized mediKanren (a novel artificial intelligence tool) to identify therapeutics to compensate for the pathological effects. Downregulation of TRKB through inhibition with mediKanren-predicted compound 1NM-PP1 led to decreased MEK activity. Upregulation of TRKB signaling by mediKanren-predicted valproic acid led to subsequent increase of mTor activity. Overall, our results provide further characterization of the pathogenicity of these two variants in the NTRK2 gene. Indeed, Y434C is the first patient-specific NTRK2 variant with demonstrated hypermorphic activity. Furthermore, we observed that variants Y434C and T720I result in distinct functional consequences that require distinct therapeutic strategies. These data suggest the possibility that unique mutations within different regions of the NTRK2 gene results in separate clinical presentations, representing distinct genetic disorders requiring unique therapeutics.


Assuntos
Encefalopatias , Receptor trkB , Inteligência Artificial , Fator Neurotrófico Derivado do Encéfalo/genética , Células HEK293 , Humanos , Glicoproteínas de Membrana , Receptor trkB/genética , Receptor trkB/metabolismo , Serina-Treonina Quinases TOR
16.
Stem Cell Res ; 56: 102554, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34619643

RESUMO

NGLY1 deficiency is a rare recessive genetic disease caused by mutations in the NGLY1 gene which codes for N-glycanase 1 (NGLY1). Here, we report the generation of two gene corrected iPSC lines using a patient-derived iPSC line (NCATS-CL6103) that carried a homozygous p.R401X mutation in the NGLY1 gene. These lines contain either one (NCATS-CL6104) or two (NCATS-CL6105) CRISPR/Cas9 corrected alleles of NGLY1. This pair of NGLY1 mutation corrected iPSC lines can be used as a control for the NCATS-CL6103 which serves as a cell-based NGLY1 disease model for the study of the disease pathophysiology and evaluation of therapeutics under development.


Assuntos
Defeitos Congênitos da Glicosilação , Células-Tronco Pluripotentes Induzidas , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Sistemas CRISPR-Cas/genética , Defeitos Congênitos da Glicosilação/genética , Homozigoto , Humanos , Mutação/genética , National Center for Advancing Translational Sciences (U.S.) , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Estados Unidos
17.
PeerJ ; 9: e12233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707933

RESUMO

Normalization of RNA-seq data has been an active area of research since the problem was first recognized a decade ago. Despite the active development of new normalizers, their performance measures have been given little attention. To evaluate normalizers, researchers have been relying on ad hoc measures, most of which are either qualitative, potentially biased, or easily confounded by parametric choices of downstream analysis. We propose a metric called condition-number based deviation, or cdev, to quantify normalization success. cdev measures how much an expression matrix differs from another. If a ground truth normalization is given, cdev can then be used to evaluate the performance of normalizers. To establish experimental ground truth, we compiled an extensive set of public RNA-seq assays with external spike-ins. This data collection, together with cdev, provides a valuable toolset for benchmarking new and existing normalization methods.

18.
bioRxiv ; 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34282419

RESUMO

The recent emergence of a novel coronavirus, SARS-CoV-2, has led to the global pandemic of the severe disease COVID-19 in humans. While efforts to quickly identify effective antiviral therapies have focused largely on repurposing existing drugs 1-4 , the current standard of care, remdesivir, remains the only authorized antiviral intervention of COVID-19 and provides only modest clinical benefits 5 . Here we show that water-soluble derivatives of α-tocopherol have potent antiviral activity and synergize with remdesivir as inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Through an artificial-intelligence-driven in silico screen and in vitro viral inhibition assay, we identified D-α-tocopherol polyethylene glycol succinate (TPGS) as an effective antiviral against SARS-CoV-2 and ß-coronaviruses more broadly that also displays strong synergy with remdesivir. We subsequently determined that TPGS and other water-soluble derivatives of α-tocopherol inhibit the transcriptional activity of purified SARS-CoV-2 RdRp and identified affinity binding sites for these compounds within a conserved, hydrophobic interface between SARS-CoV-2 nonstructural protein 7 and nonstructural protein 8 that is functionally implicated in the assembly of the SARS-CoV-2 RdRp 6 . In summary, we conclude that solubilizing modifications to α-tocopherol allow it to interact with the SARS-CoV-2 RdRp, making it an effective antiviral molecule alone and even more so in combination with remdesivir. These findings are significant given that many tocopherol derivatives, including TPGS, are considered safe for humans, orally bioavailable, and dramatically enhance the activity of the only approved antiviral for SARS-CoV-2 infection 7-9 .

19.
Trials ; 22(1): 431, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225789

RESUMO

BACKGROUND: Therapeutic targeting of host-cell factors required for SARS-CoV-2 entry is an alternative strategy to ameliorate COVID-19 severity. SARS-CoV-2 entry into lung epithelium requires the TMPRSS2 cell surface protease. Pre-clinical and correlative data in humans suggest that anti-androgenic therapies can reduce the expression of TMPRSS2 on lung epithelium. Accordingly, we hypothesize that therapeutic targeting of androgen receptor signaling via degarelix, a luteinizing hormone-releasing hormone (LHRH) antagonist, will suppress COVID-19 infection and ameliorate symptom severity. METHODS: This is a randomized phase 2, placebo-controlled, double-blind clinical trial in 198 patients to compare efficacy of degarelix plus best supportive care versus placebo plus best supportive care on improving the clinical outcomes of male Veterans who have been hospitalized due to COVID-19. Enrolled patients must have documented infection with SARS-CoV-2 based on a positive reverse transcriptase polymerase chain reaction result performed on a nasopharyngeal swab and have a severity of illness of level 3-5 (hospitalized but not requiring invasive mechanical ventilation). Patients stratified by age, history of hypertension, and severity are centrally randomized 2:1 (degarelix: placebo). The composite primary endpoint is mortality, ongoing need for hospitalization, or requirement for mechanical ventilation at 15 after randomization. Important secondary endpoints include time to clinical improvement, inpatient mortality, length of hospitalization, duration of mechanical ventilation, time to achieve a normal temperature, and the maximum severity of COVID-19 illness. Exploratory analyses aim to assess the association of cytokines, viral load, and various comorbidities with outcome. In addition, TMPRSS2 expression in target tissue and development of anti-viral antibodies will also be investigated. DISCUSSION: In this trial, we repurpose the FDA approved LHRH antagonist degarelix, commonly used for prostate cancer, to suppress TMPRSS2, a host cell surface protease required for SARS-CoV-2 cell entry. The objective is to determine if temporary androgen suppression with a single dose of degarelix improves the clinical outcomes of patients hospitalized due to COVID-19. TRIAL REGISTRATION: ClinicalTrials.gov NCT04397718. Registered on May 21, 2020.


Assuntos
COVID-19 , Veteranos , Ensaios Clínicos Fase II como Assunto , Hospitalização , Humanos , Masculino , Estudos Multicêntricos como Assunto , Oligopeptídeos , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Resultado do Tratamento
20.
Genome Med ; 13(1): 90, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020708

RESUMO

BACKGROUND: We aimed to define the clinical and variant spectrum and to provide novel molecular insights into the DHX30-associated neurodevelopmental disorder. METHODS: Clinical and genetic data from affected individuals were collected through Facebook-based family support group, GeneMatcher, and our network of collaborators. We investigated the impact of novel missense variants with respect to ATPase and helicase activity, stress granule (SG) formation, global translation, and their effect on embryonic development in zebrafish. SG formation was additionally analyzed in CRISPR/Cas9-mediated DHX30-deficient HEK293T and zebrafish models, along with in vivo behavioral assays. RESULTS: We identified 25 previously unreported individuals, ten of whom carry novel variants, two of which are recurrent, and provide evidence of gonadal mosaicism in one family. All 19 individuals harboring heterozygous missense variants within helicase core motifs (HCMs) have global developmental delay, intellectual disability, severe speech impairment, and gait abnormalities. These variants impair the ATPase and helicase activity of DHX30, trigger SG formation, interfere with global translation, and cause developmental defects in a zebrafish model. Notably, 4 individuals harboring heterozygous variants resulting either in haploinsufficiency or truncated proteins presented with a milder clinical course, similar to an individual harboring a de novo mosaic HCM missense variant. Functionally, we established DHX30 as an ATP-dependent RNA helicase and as an evolutionary conserved factor in SG assembly. Based on the clinical course, the variant location, and type we establish two distinct clinical subtypes. DHX30 loss-of-function variants cause a milder phenotype whereas a severe phenotype is caused by HCM missense variants that, in addition to the loss of ATPase and helicase activity, lead to a detrimental gain-of-function with respect to SG formation. Behavioral characterization of dhx30-deficient zebrafish revealed altered sleep-wake activity and social interaction, partially resembling the human phenotype. CONCLUSIONS: Our study highlights the usefulness of social media to define novel Mendelian disorders and exemplifies how functional analyses accompanied by clinical and genetic findings can define clinically distinct subtypes for ultra-rare disorders. Such approaches require close interdisciplinary collaboration between families/legal representatives of the affected individuals, clinicians, molecular genetics diagnostic laboratories, and research laboratories.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , RNA Helicases/genética , Animais , Biomarcadores , Expressão Gênica , Técnicas de Silenciamento de Genes , Estudos de Associação Genética/métodos , Mutação em Linhagem Germinativa , Células HEK293 , Humanos , Imuno-Histoquímica , Mutação , Fenótipo , RNA Helicases/química , RNA Helicases/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...